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Abstract

 

 In this paper we address the mathematical problem
of noise generation from high speed moving surfaces.
The problem we are solving is the linear wave equation
with sources on a moving surface. The Ffowcs Will-
iams-Hawkings (FW-H) equation as well as the govern-
ing equation for deriving the Kirchhoff formula for
moving surfaces are both this type of partial differential
equation. We give a new exact solution of this problem
here in closed form which is valid for subsonic and
supersonic motion of the surface but it is particularly
suitable for supersonically moving surfaces. This new
solution is the simplest of all high speed formulations of
Langley and is denoted formulation 4 following the tra-
dition of numbering of our major results for the predic-
tion of the noise of rotating blades. We show that for a
smooth surface moving at supersonic speed, our solu-
tion has only removable singularities.Thus it can be
used for numerical work. 

 

1. Introduction

 

The problem of noise generation from moving bod-
ies is very important in aeroacoustics. Two current
methods of attacking this problem are the acoustic anal-
ogy and the Kirchhoff formula for moving surfaces. The
acoustic analogy method is based on different forms of
the solution of the Ffowcs Williams-Hawkings (FW-H)
equation

 

1

 

. This is a linear wave equation with sources
on a moving surface. The Kirchhoff formula is also
derived from a linear wave equation with sources on a
moving surface

 

2

 

. For simplicity, we refer to this wave
equation here as the Kirchhoff (K) equation. Using
generalized function theory, both the FW-H and the
K equations can be written with inhomogeneous source
terms involving the Dirac delta function with support on
the moving surface 

 

f = 

 

0 and the first derivatives of this
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delta function. The method of solution of these two
equations are, thus, identical.

Obtaining various forms of the solution of these
equations for subsonic surfaces is fairly easy. These
solutions (Formulations 1 and 1A of Farassat) have been

published elsewhere

 

2-5

 

. We will not, therefore, address
the subsonic case here. We mention that the common
forms of the solution for subsonic surfaces have a Dop-
pler singularity which make them unsuitable for super-
sonically moving surfaces. To obtain new forms of
solution of the FW-H and the K equations for supersonic
surfaces, we must integrate the Green’s function of the
wave equation in a different way than the subsonic

case

 

1-3

 

. This was fully recognized by Ffowcs Williams

and Hawkings

 

1

 

 and they laid the foundation for the
work we present here. The solution of the supersonic
problem is considerably more difficult than the subsonic
case and it has taken a lot longer to fully overcome the
many mathematical obstacles.

To understand the nature of the complexities
involved, one must recognize that the problem as treated
here is four dimensional. We are interested in formula-
tions which are suitable for efficient numerical noise
prediction from rotating machinery. This requirement
puts a restriction on what forms of the solution of the
FW-H and the K equation are acceptable to us. In
practice, it has been found that the common formula-
tions for subsonic surfaces are much more efficient than
the supersonic formulations even if the latter can also be
used for subsonic surfaces. Thus, one is forced to use
more than one formulation in any noise prediction code
based on the FW-H and K equations. 

In noise calculation, a moving surface, such as a
blade, is divided into panels and the noise generated by
each panel is summed up to get the total noise from the
surface. This means that the FW-H and K equation must
be solved for an open surface, e.g., a panel on the
moving surface. Thus we must solve these two equa-
tions with inhomogeneous source terms that have a
Heaviside function multiplying the Dirac delta functions
which describe the open surface. The mathematical
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treatment of these inhomogeneous source terms pro-
duces an additional complexity in obtaining solutions of
these equations for the supersonic case. 

In the subsonic case, the Doppler factor appears as
the result of integration of the source time variable in the
Green’s function solution of the wave equation after a
Lagrangian frame is introduced in which the surface is
time independent. This step makes the problem essen-
tially three dimensional. To get other forms of the solu-
tion suitable for a supersonically moving surface, one
must use integration over the influence surface of the
observer space-time variables  which we call the

. This surface is more fundamental to the
solution of the wave equation than the actual moving
surface over which the subsonic formulations are
integrated. 

In the next section the governing equations of the
problem under consideration are presented. In Section 3,
we will give a new solution of the FW-H and the K
equations in closed form for supersonic surfaces. In Sec-
tion 4 we will show that the singularities of the solution
are integrable. The concluding remarks follow. 

 

2. The Governing Equations

 

The Ffowcs Williams-Hawkings Equation and the
Kirchhoff equation are quite well-known in
aeroacoustics. We will need a special form of these
equations suitable for our work. The FW-H equation for
a moving surface  where  outside the
body is

(1)

where  is , 

 

ρ 

 

is the density, and 

 

ρ

 

0 

 

and 

 

c

 

are the density and speed of sound of undisturbed
medium. The local normal fluid and body velocities are
denoted by 

 

u

 

n 

 

and 

 

v

 

n

 

, respectively. The Lighthill stress
tensor is denoted 

 

T

 

ij 

 

and p is the surface pressure on

 

f = 

 

0

 

.

 

 Note that we assume that the surface 

 

f 

 

is defined
such that  where 

 

n

 

 is the unit outward normal
to this surface. The Heaviside function is denoted 

 

H(f)

 

.
As proposed by Ffowcs Williams and Hawkings

 

1

 

, the
moving surface 

 

f = 

 

0 can be penetrable and we assume
so here.

We next find all the surface contributions of the last
term of Eq. (1) by taking the space derivatives explicitly

and using the rules of generalized differentiation

 

2,6,7

 

.
We get

(2)

We will then consider an open surface described by

 

f

 

 = 0,  where  is the equation of the
edge of this open surface

 

2,6

 

. We define  such that
 where 

 

ν

 

 is the unit inward geodesic normal to
the edge 

 

2,6

 

. To calculate the noise from
this open surface, we must multiply 

 

δ

 

(

 

f

 

) in 

 

Q

 

1

 

, 

 

Q

 

2

 

 and

 

Q

 

3

 

 by the Heaviside function . We will next use
the concept of restriction of a variable to the surface 

 

f

 

 =
0 and then take the derivatives of 

 

Q

 

1

 

 and 

 

Q

 

2

 

 terms
explicitly

 

6

 

. We use a tilde under a symbol to signify
restriction.

Introducing the notations

(3a)

(3b)

we have

(4)

and

(5)

x t,( )
Σ surface–

f x t,( ) 0= f 0>

p′2
t∂

∂ ρun ρ ρ0–( )vn–[ ]δ f( ){ }=

xi∂
∂ ρ un vn–( )ui pni+[ ]δ f( ){ }–

xi xj∂

2

∂
∂

Tij H f( )[ ]+

p′ ρ ρ0–( )c2

f∇ n=

p′2
t∂

∂ ρun ρ ρo–( )vn–[ ]δ f( ){ }=

xi∂
∂ ρvnui ρ ρ0–( )c2

ni–[ ]δ f( )
 
 
 

+

Tij∂
xj∂

---------- ni δ f( )
2
Tij∂

xi xj∂∂
--------------- H f( )+ +

Q1 Q2 Q3 Q4+ + +≡

f̃ 0> f f̃ 0= =
f̃

∇ f̃ ν=
f f̃ 0= =

H f̃( )

E ρun ρ ρ0–( )vn–=

Ei ρvnui ρ ρ0–( )c2
ni ,–=

Q1 t∂
∂

E
˜

H f̃( )δ f( )[ ]=

E
˜
˙ H f( )˜ δ f( ) E vν δ f̃( )δ f( )–=

E
˜

v
˜n H f( )˜ δ′ f( )–

Q2 xi∂
∂

E
˜ i H f̃( )δ f( )[ ]=

ET H f( )˜ δ f( ) Eiν iδ f̃( )δ f( )+⋅2∇=

2 H f Enni H f( )˜ δ f( )–

E
˜ in˜ i H f( )˜ δ′ f( )+



3

American Institute of Aeronautics and Astronautics

Here, vn is the local velocity of the edge along the geo-
desic normal ν with components νi, ET is the projection
vector Ei on the surface of f = 0 and Hf is the local mean
curvature of the surface f = 08,9. The surface divergence
of ET is 9. Using Eqs. (4) and (5), we get

(6)

where we have defined the following symbols

(7)

(8)

(9)

In Eq.Eq.Eq. (7), En = Eini and Mn = vn/c is the local
Mach number on f = 0.  Note that q2 in Eq. (6) is
restricted to the surface f = 0.  Also note that in Eq. (5),
we have dropped the restriction on any variable that
multiplies δ(f) if it is not differentiatedPhus we write 
and not .  There is also no need to use restriction sign
on  since ET is already restricted to f = 0.  It is
important to recognize that  is the rate of change of E
as measured by an observer on the surface.

The FW-H equation for an open penetrable surface
moving at supersonic speed is:

(10)

A similar equation is also obtained for derivation of the
Kirchhoff formula2 for an open surface f = 0, 

where we have:

(11)

(12)

(13)

We will go one further step here in preparation of
obtaining the new formulation. We note that for a sur-
face f = 0, , we have the following results2,6:

(14)

(15)

where Hf is the mean curvature of f = 08,9. Introduce a
new generalized function (distribution)  by the
following relation:

(16)

The subscript s in  stands for “simple” which
emphasizes the similarity of  to the one dimen-
sional  that behaves as follows:

(17)

Now using the results of eqs. (15) and (16) in Eq. (14),
we see that the following relation holds:

(18)

Equation (18) is next used in Eq. (10) which is writ-
ten as

(19)

where now only the definition of q1 is changed as fol-
lows:

(20)

and

(21)

In the following section, we give the full solution of
Eq. (19).

Remark. We will not address the solution of the
FW-H equation with the pure quadrupole term alone:

(22)

The solution using the collapsing sphere approach is
singularity free and is given elsewhere1,6.

ET⋅2∇

Q1 Q2 Q3+ + q1 H f̃( )δ f( ) q
˜ 2

H f̃( )δ′ f( )+=

q3 δ f̃( )δ f( )+

q1

Tij∂
xj∂

----------ni E
˜
˙ ET 2 H f En–⋅2∇+ +=

q2 c
2 ρ ρ0–( ) Mn

2
1–( )=

q3 ρ vnuν unvν–( ) ρ ρ0–( )vnvν+=

E
˜
˙

Ė
ET⋅2∇

E
˜
˙

p′2 q1 H f̃( )δ f( ) q
˜ 2

H f( )˜ δ′ f( )+=

q3 δ f̃( )δ f( )+

f̃ 0>

q1
p′∂
n∂

--------–
1
c
---Mn

p′∂
t∂

--------–
1
c
---

t∂
∂

M
˜ n p′

˜
( )– 2 H f p′+=

q2 Mn
2

1–( )p′=

q3 MnMν p′=

∇ f 1=

Q y( ) δ′ f( ) yd∫ Q∂
n∂

-------– 2H f Q+ Sd
f = 0
∫=

Q y( ) δ f( ) yd∫ Q Sd
f = 0
∫=

δ′s f( )

Q y( ) δ′s f( ) yd∫
Q∂
n∂

------- Sd
f = 0
∫–=

δ′s f( )
δ′s f( )

δ′ x( )

φ x( ) δ′ x( ) xd∫ φ′ 0( )–=

δ′ f( ) δ′s f( ) 2 Hf δ f( )+=

p′2 q1 H f̃( ) δ f( ) q
˜ 2

H f( ) δ′s f( )+=

q3 δ f̃( ) δ f( )+

q1

Tij∂
xj∂

---------- ni E
˜
˙ ∇ 2 ET⋅+ +=

2H f ρvn vn un–( )[ ρ0vn
2 ] (FW-H eq.)–+

q1
p′∂
n∂

--------–
1
c
--- Mn

p′∂
t∂

--------–
1
c
--- ∂

t∂
----- M

˜ n p
˜
′( )–=

2H f Mn
2

K eq.( )+

p′2 Q4

2Tij∂
xi xj∂∂

--------------- H f( )= =
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3. Solution of Wave Equation With Sources on A 
Moving Open Surface

In this section, we give the solution to the following
three wave equations:

(23)

(24)

(25)

The source terms here are similar to those of Eq. (19).
The treatment of these equations are discussed in two
references by Farassat2,6. We will use the solutions to
eqs. (23) and (25) given in these references but will give
here a new and particularly simple solution of Eq. (24).
The materials presented in these references are essential
in understanding what follows.

Let ,
and , where the sub-
script ret stands for retarded time. The influence surface
of the open surface f = 0,  is called the

 and is described by F = 0, 2,6. The
edge of this surface is the L-curve described by

. Below, we use (x, t) and (y, τ) as the
observer and the source space-time variables, respec-
tively. The solution of Eq. (23) is2,6:

(26)

where

(27)

Here, Mn is the local normal Mach number of the sur-
face f = 0 and  where n is the unit outward
normal to f = 0,  = (x − y)/r is the unit radiation vector
from the source to the observer and r = |x − y|.

We now consider Eq. (24). The formal solution of
this equation using the Green’s function method is

(28)

where g = τ − t + r/c. We now introduce a new local
frame (u1, u2, u3) where u3 = f and u1 and u2 are the
Gaussian coordinates on f = constant, extended from
f = 0 along local normal. We assume that u1 is the length
variable along the projection of  on the local tangent
plane and u2 is the length variable along . Let g(2)

be the determinant of the coefficients of the first funda-
mental form in the new variables. Let , then Eq.
(28) becomes

(29)

Note that we have used

(30)

and g(2) must be restricted to f = 0 because we are deal-
ing with  where the curvature term of 
has already been removed (see Eq. (18)) and added to
q1. We must mention here that, in new variables

.

The condition g = 0 in Eq. (29) implies that
. We will use this result in the inte-

gration of  in Eq. (29). We get

(31)

We have the following results

(32)

(33)

(34)

(35)

where t1 is the unit vector along the projection of  on
the local tangent plane and (sum on i) is the
Christoffel symbol of second kind in the new coordinate
system. Note that we have a locally orthogonal frame

φ1
2 q1 x t,( ) H f̃( )δ f( )=

φ2
2 q

˜ 2
x t,( ) H f̃( )δ′s f( )=

φ3
2 q3 x t,( ) δ f̃( )δ f( )=

F̃ y x t,;( ) f̃ y t r /c–,( ) f̃ y τ,( )[ ] ret= =
F y x t,;( ) f y τ,( )[ ] ret=

f̃ 0>
Σ surface– F̃ 0>

F F̃ 0= =

4πφ1 x t,( ) 1
rΛ
------ q1[ ]

ret
Σd

F 0=
F̃ 0>

∫=

Λ2
1 Mn

2
2 Mn θcos–+=

θcos n r̂⋅=
r̂

4πφ2 x t,( ) 1
r
---q

˜ 2
y τ,( ) H f̃( )δ′s f( )δ g( ) yd τd∫=

r̂
r̂ n̂×

u
1

g→

4πφ2 x t,( )
q
˜ 2

y τ,( )

r
------------------- H f( ) δ′s u

3( )∫=

δ× g( ) g
˜ 2( ) u

1
du

2
du

3
dτd

c
q
˜ 2

g
˜ 2( ) H f( )

r θsin
----------------------------------

g 0=
∫=

δ× ′s u
3( ) u

2
d u

3
d τd

g∂

u
1∂

--------
1
c
--- θsin=

δ′s u
1( ) δ′ u

1( )

q
˜ 2

y τ,( ) q2 y u
1

u
2

0 τ, , ,( ) τ,[ ]=

u
1

u
1

u
2

u
3 τ, ,( )=

δ′s u
1( )

4πφ2 x τ,( )

c
u

3∂

∂ q
˜ 2

g 2( )H f̃( )

r θsin
---------------------------------

g 0= 



u
3

0=

du
2
dτ





∫–=

u
1∂

u
3∂

--------
g 0=

θcot–=

θsin∂

u
3∂

--------------
g 0=

θcot
r

-----------=

g
˜ 2( )∂

u
3∂

---------------- Γ i
1i

g
˜ 2( ) θcot–=

H f̃( )∂

u
3∂

---------------- θ ν t1 δ f̃( )⋅cot–=

r̂
Γ i

1i



5

American Institute of Aeronautics and Astronautics

which gives g(2) = 1 at the origin but because we have a
curved surface, we get Eq. (34). Therefore, in the rest of
the algebraic manipulations, we will set g(2) = 1.

We can now write Eq. (31) in the following form
after taking the derivative with respect to u3 of the inte-
grand:

(36)

where  is the angle between  and the edge of the
open surface described by .

In our previous work, we have used  for du2

where  is the element of the curve of intersection of
f = 0 with the collapsing sphere g = 0. We have shown
also that6,10

(37)

(38)

where L is the edge of the  described by
 and

(39)

(40)

(41)

(42)

(43)

Therefore, Eq. (36) can be written as follows:

(44)

We have separated the integrals over the  in
this equation to simplify the analysis of the singularities.

Finally, the solution of Eq. (25) was also given by
Farassat2,6 as follows:

(45)

We have thus given the full solution of Eq. (19) which
we refer to as formulation 4. Only Eq. (44) in our analy-
sis is new. In the next section, we will discuss the
important question of the singularity of the solution of
Eq. (19).

4. A Study of the Singularities of the Solution for 
Supersonic Surfaces

We will now address the question of the singulari-
ties in the solution of the FW-H and K equations. There
has been a general belief among the researchers, the
authors of this paper included, that the solution of these
equations lead to nonintegrable singularities for some
observer space-time variables (x, t). We will show here
that for a smooth surface, all the singularities of the new
solution are integrable. We assume that f = 0 is not an
open surface and thus we only consider the integrals
over the : F(y; x, t) = f(y, t − r/c) = 0. See
articles by Farassat, De Bernardis and Myers for the
analysis of the singularities of the line integrals11,12.
As will be seen below, the analysis of the singularities
of the surface integrals is very difficult. 

4πφ2 x t,( )

c
θcos

r sin
2θ

---------------- t1 q22∇ θcos

r
2
sin

3θ
------------------q2+⋅ u

2
d τd∫=

c
θcos

r sin
2θ

---------------- Γ i
1i q2 u

2
d τd∫+

c
ν t1 θcos⋅

r sin
2θ ψcos

--------------------------------- q2 τd∫+

ψ r̂
f f̃ 0= =

dΓ
dΓ

cdτ dΓ
θsin

----------------- dΣ
Λ
------=

dτ
ψcos

---------------- dL
Λ0
------=

Σ surface–
F F̃ 0= =

Λ0 ∇ F ∇ F̃× ΛΛ̃ θ′sin= =

θ′cos N N ′⋅=

Ñ ∇ F̃

∇ F̃
-----------

ν M ν r̂–

Λ̃
--------------------= =

Λ̃
2

1 Mν
2

2Mν θ̃cos–+=

θ̃cos ν r̂⋅ ν t1⋅= =

4πφ2 x t,( )

θcos
r θsin
------------- t1 q22∇⋅ θcos

r
2
sin

2θ
------------------q2+

ret

dΣ
Λ
------

F 0=
F̃ 0>

∫=

θcos
rΛ θsin
------------------ Γ

i
1i q2[ ]

ret
Σd

F 0=
F̃ 0>

∫+

θ̃ θcoscos

rΛ0sin
2θ

------------------------ q2[ ]
ret

Ld
F 0=
F̃ 0=

∫+

Σ surface–

4πφ3 x t,( ) 1
rΛ0
--------- q3[ ]

ret
Ld

F 0=
F̃ 0=

∫=

Σ surface–
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There are two kinds of singularities in the surface
integrals: i) , i. e.,  but

, and ii) . We will show below that 
also implies . Condition i) means that at
some source time, the collapsing sphere g = 0 is tangent
to the surface f = 0 at a point where . Condition
ii) means that at some source time g = 0 is tangent to
f = 0 at a point where . We will prove these
assertions for appearance of singularity  below.
We assume that f = 0 is convex with no saddle points.

 Consider a rotating surface part of which moves at
supersonic speed. We can write  as follows:

(46)

Therefore,  if  and 
simultaneously. This means that we must have 
and  or  and . The
geometrical interpretation of these conditions is obvi-
ous. Since f = 0 is assumed to be moving supersonically
on part of its surface, there is a curve  on f = 0 on
which  or . If at any source time ,
the collapsing sphere  is tangent to
f = 0 at a point on , then the integrands of the surface
integrals of formulation 4 are singular for the time

. Note that, in general, the curve  is
time dependent but it is not so for a hovering rotor oper-
ating at supersonic tip speed. This is the case we study
here. 

We must study the two conditions of appearance of
singularities separately. The reason becomes apparent
below. Let us first write the kinds of integrals we have:

(47)

(48)

(49)

We will show that all the singularities are integrable.

Condition i): 

Near this point, the intersection of g = 0 and f = 0 is
a circle of radius b. We can show that if this condition
appears at τ = 0, then as ,  where C is

a constant. We next use the relation10 

(50)

where Γ is the curve of intersection of g = 0 with f = 0.
Near the point A, above, ,
where b is the radius of Γ which is a small circle, and 
is the azimuthal angle around Γ. Thus, we have

(51)

which means if q(y, τ) is continuous, then

(52)

is integrable. Therefore, we have shown the integral

(53)

is integrable.

For I2, we use the fact that  and
 to write the integral in the form

(54)

where . This integral is convergent.

The study of convergence of I3 is very interesting.
It appears that this integral is not convergent. We
manipulate the integrand as follows near the condition

:

(55)

We note that  and

 (56)

and, thus, near the point of tangency of f = 0 and g = 0:

(57)

θsin 0= θ 0° or 180°=
Λ 0≠ Λ 0= Λ 0=

θ 0° or 180°=

Mn 1±≠

Mn 1±=
Λ 0=

Λ2

Λ2
1 Mn θcos–( )2

Mn
2 2θ.sin+=

Λ 0= θsin 0= 1 Mn θcos– 0=
Mn 1=

θ 0°= Mn 1–= θ 180°=

Ψ
Mn 1= Mn 1–= τ0

g τ t– r /c = 0+=
Ψ

t0 τ0 r /c+= Ψ

I 1
1

rΛ
------ q1[ ]

ret
Σd

F 0=
F̃ 0>

∫=

I 2
θcos

rΛ θsin
------------------Γ i

1i
q2[ ]

ret
Σd

F 0=
F̃ 0>

∫=

I 3
θcos

r θsin
------------- t1 ∇ 2q

2
θcos

r
2
sin

2θ
------------------ q2+⋅

ret

Σd
Λ
------

F 0=
F̃ 0>

∫=

θsin 0 Λ 0≠,=

τ 0→ b C τ=

dΣ
Λ
------ c dΓ dτ

θsin
------------------=

dΓ bdϕ θsin, b r⁄= =
ϕ

Σd
Λ
------ c= rdϕdτ

I 1 c τ q2[ ]
ret

ϕd
0

2π
∫d

τ
∫=

I 1
1

rΛ
------ q1[ ]

ret
Σd

F 0=
F̃ 0>

∫=

θsin b r⁄=
b C τ=

I 2
c a τd

C τ
-------------- Γ i

1i
q2[ ]

ret
ϕd

0

2π
∫

τ
∫=

a r τ  = 0( )=

θsin 0=

E
θcos

r θsin
------------- t1 ∇ 2q2⋅=

θcos

r
2
sin

2θ
------------------ q2

a

rb
2

-------- b t1 ∇ 2q2 q2+⋅[ ]≈+

t1 ∇ 2q2⋅ q2 b∂⁄∂–=

b t1 ∇ 2q2 q2+⋅ b
2

2q2∂

b
2∂

------------=

E
a
r
---

2q2∂

b
2∂

------------≈
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The convergence of I3, therefore, depends on the value
of the following integral when :

(58)

We can easily show that

(59)

The convergence of I3 is, thus, guaranteed. We conclude
that when  and , formulation 4 has only
removable singularities.

Condition ii):  (implies )

As we have shown above, when g = 0 is tangent to
f = 0 at a point where , we have  and
from the tangency condition . The first thing
we study here is the structure of the  near a
point where . We then study the problem of the
singularities of formulation 4.

We consider the condition  and 
for a hovering rotor. Figure 1 shows the tangent plane T
to a point on  looking edgewise at the moment of tan-
gency of the collapsing sphere with f = 0 at the point A.
Note that  at this moment so that the
observer is in the plane shown at the center of the col-
lapsing sphere g = 0. We assume  and r = a at
the moment of tangency. Since  at A, we have

 where µ is the angle that T makes with
Mach number vector M shown in Fig. 1. We now con-
sider the plane T in motion for  where ε > 0 is a
small number. In the frame fixed to T with origin at A as
shown in Fig. 2, the curve of intersection of g = 0 with
T, which is a circle is given by the relation

(60)

Where ,  and β and  are defined
in fig. 2. We use R for the distance from A to the axis of
rotation. The center of the circle is at the point

 and its radius is .
It is clear that as , the  looks like a
vertex of a cone and has no tangent at the vertex coin-
ciding with A. The condition of  is thus
equivalent to the  becoming pointed and
having no tangent plane at the point A.

Let us see what the intersection of g = 0 and T will
appear to an observer on the tangent plane T. Figure 3

shows the envelope of the circles of Eq. (60). We reject
the part of the envelope in the region M < 1 because it
would imply multiple emission from subsonic region
which is impossible. This means that we have no inter-
section of g = 0 and T for τ < 0. This figure clearly
shows that the  looks like a cone near A.

For convergence of I1, the analysis of condition i)
applies exactly so that I1 has removable singularity. The

θ 0→sin

I 3 c a dτ
2q2∂

b
2∂

-----------
τ 0=

ϕd

0

2π
∫

τ
∫=

2q2∂

b
2∂

-----------
τ 0=

ϕd

0

2π
∫ ∇ 2

2
q2[ ] τ 0==

θ 0→sin Λ 0≠

Λ 0= θsin 0=

Mn 1±= Λ 0=
θsin 0=

Σ surface–
Λ 0=

θ 0°= Mn 1=

Ψ

Mn n r̂= =

τ0 0=
Mn 1=

µsin 1 M⁄=

τ ε<

x βVa– τ( )2
y γVRτ+( )2

+ Va
2β2τ2

=

Va aω= VR Rω= γ

x y,( ) βVaτ γ– VRτ,( )= Vaβ τ
τ 0→ Σ surface–

Λ 0=
Σ surface–

Fig. 1. The geometric condition for the appearance of 
Λ = 0: , i.e., .

Fig. 2. The coordinate system used to study the intersec-
tion of g = 0 with f = 0 near the condition Λ = 0.

Σ surface–

g = 0

µ

Observerx

a

A

n = r = Mn

M

T:  Tangent
     Plane

θ 0° Mn, 1= = Mn r̂ n= =

µ

β = sin µ = 1/M
γ = cos µ

A M

z

x-axis out
of the plane

y
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study of the convergence of I2 is different since from

Eq. (60) we see that as , we have 

where C1 is a constant. However, we note that for both
the FW-H and K equations, q2 is proportional to

. We can easily show that as ,

 where C2 is another constant. There-

fore, the convergence of I2 is guaranteed because near

, we can write I2 as

(61)

where . As a matter of fact, I2, is
better behaved for condition ii) than condition i)!

For I3, the convergence study of condition i) applies
exactly for condition ii). Therefore formulation 4 has
only removable singularities for condition ii) also.

We conclude that for a smooth surface, the solution
of FW-H and the K equations as given here have only
integrable (removable) singularities for a supersonic
surface f = 0. The solution of the K equation is, of
course, known as the Kirchhoff formula for supersonic
surfaces.

Remark 1. The solutions of the FW-H and the K
equation here are valid for all range of the surface speed.
But we do not recommend to use the present results for
subsonic surfaces since much more efficient solutions
for numerical method are available2,5,10.

Remark 2. It can be shown that had we not added
the surface terms from the quadrupole source term of
the FW-H equation to the thickness and loading source
terms, the resulting solution would be singular when the
condition  appears. The acoustic pressure signa-
ture will have a logarithmic singularity which will
appear as an infinite pulse. Our analysis shows that
when all the surface sources from thickness, loading and
quadrupole terms are included in the analysis, there is
no infinite singularities in the acoustic field.

5. Concluding Remarks

We have given the closed form solution of the
FW-H and the K equations for an open surface.
Although these solutions are valid for all range of Mach
numbers, we recommend them for the supersonic
motion of the surface because of their complexity. We
have shown that for a smooth surface, the singularities
of the solutions of both of these equations are integrable.
The nature of these singularities is explained in this
paper. It is very interesting to note that for the FW-H
equation, the thickness and loading source terms alone
have nonintegrable singularities in the solution. How-
ever, the addition of the surface source terms from the
quadrupole source term removes this singularity. This
is, of course, expected on intuitive grounds.

We hope that the present work gives further impe-
tus to numerical applications of our results in high speed
rotating blade noise prediction. The closed form analytic
results of this paper open up two other areas of applica-
tion which could help aeroacousticians in their endeavor
to reduce the noise of aeronautical machines. These
areas are: i) qualitative analysis of noise generation
mechanisms by the analytic study of the appropriate
integrals in our solutions of the FW-H and K equations,
and ii) approximate analysis of the radiation field from
ducted fan inlet and exhaust and other openings that
radiate sound to an infinite medium. The analysis is sim-
ilar to the use of the conventional Kirchhoff formula for
the study of diffraction by an aperture.

Much work is ahead of us in the order of magnitude
analysis of the terms in the solution of the FW-H and the
K equation. Can a deformable body f = 0 be used to
control noise radiation at high speed? Can we design a
rigid body with desirable noise radiation property in a
given direction? 

Fig. 3. The shaded area is the trace of the intersection of 
g = 0 in the xy-plane of figure 2 near the condition 
Λ = 0. It is assumed that τ = 0 for Λ = 0.

A

y

Subsonic
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Errata For AIAA 98-2375: A Study of 
Supersonic Sources- The Ffowcs Williams-

Hawkings Equation and the Kirchhoff 
Formula

 

F. Farassat, Kenneth S. Brentner and M. H. Dunn

 

There is an error in Eq. (30) of this paper presented at the 4th AIAA/CEAS 
Aeroacoustics Conference in Toulouse, France resulting in a number of 
changes in the solution of the wave Eq.(28). Equation (30) must be corrected 
to 

 

         

 

 (30)

where  is the normal curvature of the surface  in the direction of  

which is the unit vector in the direction of the projection of the radiation vec-

tor  on the local tangent plane. This relation is valid to the first order in  

and . Equation (29) must be written as follows:

        (29)

Equation (31) becomes

             (31)
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Initially we assume that the collapsing sphere is not tangent to the panel 

 as it crosses the panel. It can be shown that 

 

Then, using the above result and after some algebraic manipulations, Eq. (36) 
becomes

           (36) 

 Equation (44) becomes

          (44)

If, however, the collapsing sphere leaves the panel tangentially, another line 
integral similar to that in eq.(44) around the edge of a hole enclosing the 
point of tangency must be added. The limit of this line integral, as the maxi-
mum diameter of the hole goes to zero, adds the following term to Eq.(44) 
which is not in the paper:

Here we have defined , 
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is the signum function and  is 

the normal curvature of the surface  at the point of tangency 
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the same side that  points into. We assume that the surface  has 

nonnegative Gaussian curvature everywhere. This is not a severe restriction 
on the surface  since, in general, one avoids a surface with saddle 

points.   Note that at the point of tangency T we have . Since  

has a factor of , the above equation is not singular even when the col-

lapsing equation leaves the panel at a point where there is a Doppler singular-

ity. Using Euler’s formula , where  and 

 are the principal curvatures at the point of tangency, the above integral 

can be integrated in closed form with respect to . Under some conditions, 

e.g., when , this integral must be interpreted as the principal 

value integral. The limit for a flat point or a cylindrical point can also be 
obtained. The above integral appears in geometrical acoustics and geometric 
diffraction theory. The full discussion of this point as well as the verification 

of the final results will be published soon1,2. The conclusions of the paper are 
correct. Specifically, we claim that we have presented the simplest possible 
formula (designated Formulation 4) for prediction of the noise from high 
speed (transonic and supersonic) moving surfaces  . The discussion of singu-
larities in the paper must be changed in light of the above results. However, 
the corrections given here improve the behavior of the integrals in Formula-
tion 4 at the singularities which are all removable.

We take this opportunity to bring to the attention of the readers the following 
misprints in this paper:

1. Equation (29), p 4, replace f with 

2. Page 4, second column  and  must be replaced everywhere 

by  and , respectively

3. Equation (31), p 4, replace  by 

4. The left sides of Eqs. (34) and (35) are evaluated at 

nT f 0=

f 0=

Mr M± n= q2

Mn
2

1–

k ϕ( ) κ̃1 ϕcos( )2 κ̃2 ϕsin( )2
+= κ̃1
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f̃

δ′ u
1( ) δ′s u
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δ′ u
3( ) δ′s u
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g 2( ) g
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5. Equation (38), p 5, replace  with 

6. Equation (40), p 5, replace  with 

7. Equation (43), p 5, replace  with 

8. First paragraph of Sec. 4, p 5, third line, ‘brief’ must be replaced by 
‘belief’

The authors thank Professor Mark Farris of Midwestern State University, 
Wichita Falls, Texas who pointed out the error in Eq.(30) and independently 
verified our results in detail. He was the 1998 ASEE Summer Faculty Fellow 
at NASA Langley Research Center working with F. Farassat. 
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